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BOUNDING GEOMETRICALLY INTEGRAL DEL PEZZO SURFACES

FABIO BERNASCONI AND GEBHARD MARTIN

ABSTRACT. We prove several boundedness statements for geometrically integral normal del
Pezzo surfaces X over arbitrary fields.

We give an explicit sharp bound on the irregularity if X is canonical or regular. In particular,
we show that wild canonical del Pezzo surfaces exist only in characteristic 2. As an application,
we deduce that canonical del Pezzo surfaces form a bounded family over Z, generalising work of
Tanaka.

More generally, we prove the BAB conjecture on the boundedness of ε-klt del Pezzo surfaces
over arbitrary fields of characteristic different from 2, 3, and 5.
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1. INTRODUCTION

We work over a field k of prime characteristic p > 0. When running the Minimal Model
Program (MMP for short) for klt projective varieties Z with canonical divisor KZ not pseudo-
effective, the outcomes are Mori fibre spaces, i.e. projective fibrations f : X → B of relative
Picard rank 1 where X has klt singularities, dimB < dimX and the anti-canonical divisor
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−KX is f -ample. It is then natural to study the geometry of X in terms of the base B and the
general fibre. In characteristic p > 0, the theorem on generic smoothness on general fibres does
not always hold, and there are examples of Mori fibre spaces where the general fibre might fail
to be normal or even reduced [MS03]. In this case, it is natural to study the generic fibre Xk(B),
which is a klt Fano variety defined over the fraction field k(B), which is imperfect as soon as
dim(B) ≥ 1.

Thanks to the recent development of the 3-dimensional MMP [HX15, CTX15, BW17, HW22,
Wal23], Mori fibre spaces are known to exist for 3-folds over fields of characteristic p > 5. The
next step in the classification problem consists in understanding the generic fibre of a 3-fold Mori
fibre space. This work is motivated by the following general question:

Question. Do the generic fibers of Mori fibre spaces form a bounded family? Can we give
explicit bounds on their cohomological invariants?

The main invariant we are interested in is the irregularity of the generic fibre. Recall that
the irregularity of Xk(B) is defined as h1(Xk(B),OXk(B)

) := dimk(B)H
1(Xk(B),OXk(B)

). The
case of relative dimension 1 is easy to treat: regular Fano curves are conics, they have vanishing
irregularity and they fail to be geometrically regular only in characteristic p = 2. The case of
relative dimension 2, i.e. the geometry of del Pezzo surfaces over imperfect fields has turned out
to be more difficult to handle. There are two known series of examples of canonical del Pezzo
surfaces with positive irregularity:

(1) In [Sch07], Schröer constructs a canonical del Pezzo surface X with a unique singular
factorial point of type A1, h1(X,OX ) = 1, ρ(X) = 1 and K2

X = 1 over an arbitrary
imperfect field of characteristic 2.

(2) In [Mad16] Maddock constructs regular del Pezzo surfaces X1 and X2 defined over an
imperfect field of p-degree 3 (resp. 4) with K2

Xd
= d and h1(Xd,OXd

) = 1. Moreover,
X1 is geometrically integral and X2 is not.

On the positive side, the recent works [PW22, FS20, JW21, BT22] indicate that the patho-
logical behaviour of del Pezzo fibrations is particular to small characteristics. In this article, we
further restrict the possibilities for the irregularity of geometrically integral canonical del Pezzo
surfaces defined over imperfect fields. Our first main result is the following:

Theorem 1.1. Let X be a geometrically integral normal locally complete intersection del Pezzo

surface over a field k of characteristic p. If h1(X,OX ) 6= 0, then k is an imperfect field, ρ(X) =
1, and either

(1) p = 3, h1(X,OX ) = 2, K2
X = 1, and X is not canonical, or

(2) p = 2, h1(X,OX ) = 1, and K2
X ≤ 2.

We note that our bound on the irregularity in the regular case is sharp, as Maddock’s example
shows. In Proposition 4.11, we describe torsors over the regular wild del Pezzo surfaces in
characteristic p = 2 that may be useful for the construction of explicit examples in the style of
Maddock. Note that the hypothesis on geometric integrality is automatically satisfied for normal
del Pezzo surfaces appearing as generic fibres of 3-folds by [Sch10, Theorem 2.3].

In the second part of this article, we prove boundedness results for del Pezzo surfaces over
imperfect fields. The Borisov–Alexeev–Borisov (BAB) conjecture (see Conjecture 5.2) states
that mildly singular (ε-klt) Fano varieties of dimension d form a bounded family over SpecZ.
While the conjecture has been proven over fields of characteristic 0 by Birkar [Bir21], it is still
open over fields of characteristic p.
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More precisely, while the case of del Pezzo surfaces over perfect fields has been known for
a long time (see [Ale94, AM04] and [CTW17, Lemma 3.1]), already the boundedness of 3-
dimensional Fano varieties is open. In this direction, the BAB conjecture for generic fibres of
Mori fibre spaces would be desirable. In [Tan19], Tanaka showed that geometrically integral
regular del Pezzo surfaces form a bounded family. Using Theorem 1.1 and the results on the
irregularity of klt del Pezzo surfaces of [BT22], we are able to prove various instances of the
BAB conjecture, following the strategy of Alexeev–Mori [AM04]:

Theorem 1.2. The following classes of del Pezzo surfaces are bounded over SpecZ:

XdP,can = {X | X is a geometrically integral canonical del Pezzo surface} ,

X tame
dP,ε = {X | X is a geometrically integral tame ε-klt del Pezzo surface} , and

X>5
dP,ε =

{
X | X is an ε-klt del Pezzo surface s.t. char(H0(X,OX )) 6= 2, 3, 5

}
.

We briefly explain the organisation of the article. In §2, we collect various results on geome-
try over imperfect fields and del Pezzo surfaces. In §3, we generalise the main results of Tanaka
[Tan19] to the canonical case. We use Ekedahl’s technique [Eke88] on the construction of α-
torsor to show an effective Kodaira vanishing theorem (Proposition 3.6) from which we deduce
that ω−12

X is very ample (Theorem 3.10). Starting from §4 we specialise to the study of geometri-
cally integral del Pezzo surfaces. We show that the Frobenius length of geometric non-normality
(an invariant introduced by Tanaka [Tan21]) is at most 1 (Corollary 4.4) on normal Gorenstein
del Pezzo surfaces, a result we use to find lower bounds on the dimension of the space of anti-
pluricanonical sections. We combine these estimates together with Maddock’s bound [Mad16,
Corollary 1.2.6] and a careful study of α-torsors to prove Theorem 1.1. In §5 we apply our re-
sults to the BAB conjecture over arbitrary fields and we prove Theorem 1.2.

Acknowledgements. We would like to thank A. Fanelli, S. Filipazzi, H. Tanaka and J. Wal-
dron for useful discussions on the topic of this article. This work started at EPFL and then
continued at the University of Bonn during mutual visits. We would like to thank both universi-
ties for the support. Part of this work was written while the first author was visiting l’Université
de Poitiers within the Fédération MARGAUx: he would like to thank S. Boissière for the kind
hospitality. FB was partly supported by the grant #200021/169639 from the Swiss National
Science Foundation.

2. PRELIMINARIES

2.1. Notations.

(1) Given a field k, we denote by k (resp. ksep) an algebraic (resp. separable) closure. We
denote by k1/p

∞

the perfect closure of k.
(2) Given a field k, a scheme X is a k-variety if it is an integral separated scheme of finite

type over k. If X has dimension 1 (resp. 2, 3), we say X is a curve (resp. surface,
3-fold).

(3) Given a projective integral k-variety X, we let dX := [H0(X,OX ) : k].
(4) Given an Fp-scheme X, we denote by F : X → X the absolute Frobenius morphism of

X. We say X is F -finite if F is a finite morphism.
(5) For an F -finite field k, its p-degree (or degree of imperfection) is defined as p-deg(k) :=

logp[k : kp].
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(6) We say (X,∆) is a pair if X is a normal k-variety, ∆ is an effective Q-divisor with
coefficients in [0, 1] and KX +∆ is a Q-Cartier divisor.

(7) For the definitions of the singularities of the MMP (as canonical, klt and log canonical),
we refer to [Kol13, Definition 2.8].

(8) Given an integral scheme X with normalisation ν : Y → X, we denote by I ⊂ OX the
conductor ideal (i.e. the annihilator of the OX-module ν∗(OY )/OX)). The correspond-
ing closed subscheme D ⊂ X is called the conductor scheme of ν. Note that I is also an
ideal of OY and the corresponding subscheme C ⊂ Y is called ramification locus of ν.

(9) A projective morphism f : X → Y of normal schemes is a contraction if f∗OX = OY .

2.2. Geometric reducedness and normality. We collect well-known results on the geometry of
algebraic varieties, especially surfaces, defined over imperfect fields that we need in this article.

Definition 2.1. A k-variety X is geometrically reduced (resp. geometrically normal, geometri-

cally regular) if the base change Xk is reduced (resp. normal, regular).

We recall Tate’s base change formula for purely inseparable field extensions.

Theorem 2.2 ([PW22, Theorem 1.1]). Let X be a normal k-variety such that k is algebraically

closed in K(X). Let Y be the normalisation of the reduced scheme (X ×k k)red together with

the natural morphism f : Y → X. Then there exists an effective divisor C ≥ 0 such that

KY + (p− 1)C = f∗KX . If X is geometrically integral, then (p− 1)C can be chosen to be the

ramification divisor of f .

We start with the behaviour of geometric reducedeness under birational equivalence.

Lemma 2.3 ([BT22, Lemma 2.2]). Let X and Y be two k-birational varieties. Then X is

geometrically reduced over k if and only if Y is geometrically reduced over k.

Next, we note that geometric normality descends under birational contractions. For the defini-
tion of the (Sn)-property we refer to [Sta, Tag 033Q].

Proposition 2.4. Let π : X → Y be a projective birational morphism of normal k-varieties. If

X is geometrically normal, so is Y .

Proof. Recall that a variety X over k has the property (Sn) if and only if Xk also has, by faith-
fully flat descent. As Y is (S2), by Serre’s criterion [Sta, Tag 031S] Y is geometrically normal
if and only if it is geometrically (R1). Suppose by contradiction that there exists a codimension
1 point η ∈ Y such that the localisation OY,η is not geometrically regular. As Y is normal, π is
an isomorphism over codimension 1 points of Y and thus X is not geometrically (R1), reaching
the contradiction. �

We discuss singularities of the MMP over imperfect fields.

Definition 2.5. Let (X,∆) be a pair over k such that k is algebraically closed in K(X). We say
it is geometrically canonical (resp. klt, log canonical), if the base change (Xk,∆k) is so.

In particular, note that geometrically log canonical implies geometrically normal. If X is
geometrically canonical (resp. klt, lc), then X is also canonical (resp. klt, lc) by [BT22, Propo-
sition 2.3]. We now specialise to the case of surfaces. Recall that the existence of resolution of
singularities for excellent surfaces has been proven in [Lip78].

https://stacks.math.columbia.edu/tag/033Q
https://stacks.math.columbia.edu/tag/031S
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Proposition 2.6. Let X be the spectrum of a local excellent ring (R,m) with closed point x. If

(X,∆) is a klt surface pair for some ∆ ≥ 0, then X has rational and Q-factorial singulari-

ties. Therefore, if two projective k-surfaces X and Y with klt singularies are k-birational, then

H i(X,OX ) ≃ H i(Y,OY ) for every i ≥ 0.

Proof. Rationality of klt surface singularities follows from [Kol13, Proposition 2.28] and Q-
factoriality of rational singularities is proven in [Lip69, Proposition 17.1]. The last statement is
obvious by considering a common resolution of X and Y . �

Corollary 2.7. Let (x ∈ X) be a Gorenstein normal surface singularity. Then X is canonical if

and only if it is rational.

Proof. If X is canonical, then it is rational by Proposition 2.6. Suppose now that X is rational
and let f : Y → X be a resolution of singularities. As X is Gorenstein and X has rational
singularities, we have that f∗ωY = ωX by [Kol13, Proposition 2.77], which in turn implies that
X has canonical singularities by [Kol13, Claim 2.3.1]. �

2.3. Del Pezzo surfaces. In this subsection, we collect some terminology on del Pezzo surfaces
and recall previously known results.

Definition 2.8. We say X is a Gorenstein (resp. canonical, regular) del Pezzo surface over k if
X is a reduced k-projective Gorenstein (resp. canonical, regular) surface with H0(X,OX ) = k
and ω−1

X is ample. We say X is a weak del Pezzo if ω−1
X is big and nef.

We recall the classification of Gorenstein normal del Pezzo surfaces over algebraically closed
fields:

Proposition 2.9 ([HW81, Theorem 2.2]). Let X be a normal Gorenstein del Pezzo surface over

an algebraically closed field k. Then one of the following holds:

(1) X is a canonical del Pezzo surface and the explicit list is described in [Dol12, Section
8], or

(2) the minimal resolution Z → X is a ruled surface of the form PE(OE ⊕ L), where E is

an elliptic curve and degL < 0. The surface X is obtained by contracting the negative

section of Z .

In [BT22, Theorem 3.3], it is shown that canonical del Pezzo surface which are geometri-
cally normal are geometrically canonical. We present a different proof of this result relying on
Proposition 2.9 and the following observation:

Lemma 2.10. Let (y ∈ Y ) be a geometrically log canonical surface singularity over k. Suppose

that Y has rational singularities. Then Yk has rational singularities.

Proof. We can suppose k is separably closed and Y is the spectrum of a local henselian ring
(R,m) by the existence of resolution of singularities [Lip78]. Let U := Spec(R) \ {m} be the
punctured spectrum. Since Y is rational, the group Pic(U) is finite by [Lip69, Proposition 17.1].
Therefore also X := Yk is Q-factorial by [Tan18a, Lemma 2.5] and thus Pic(Uk) is a torsion
group. Let f : W → X be the minimal resolution with exceptional divisor E =

∑n
i=1Ei. As

defined in [Lip69], Pic0(W ) is the group of line bundles L on W such that L · Ei = 0 for
every i and there is an exact sequence of groups 0 → Pic0(W ) → Pic(W ) →

⊕
Z[Ei] → 0.

By [Lip69, Proposition 14.4], Pic0(W ) embeds into Pic(Uk) and thus we deduce it is a torsion
group.
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Suppose now by contradiction that X is not rational. By the classification of log canonical
singularities [Kol13, Corollary 3.39], the exceptional divisor E is either an elliptic curve, a nodal
curve or a circle of smooth rational curves. In the first case Pic0(E) ≃ E(k), while in the
latter cases Pic0(E) ≃ k∗. By [Lip69, Lemma 14.3], the restriction map Pic(W ) → Pic(E) is
surjective. Considering the exact sequence 0 → Pic0(E) → Pic(E) → Zn → 0, we can deduce
that the map Pic0(W ) → Pic0(E) is surjective. This is a contradiction as Pic0(W ) is torsion
while k∗ and E(k) are not. �

Proposition 2.11. Let X be a canonical del Pezzo surface. If X is geometrically normal, then it

is geometrically canonical.

Proof. By Proposition 2.9, X is geometrically log canonical. As X has rational singularities, X
is geometrically rational by Lemma 2.10. As X is Gorenstein, we conclude that X is geometri-
cally canonical by Corollary 2.7. �

We now recall the results of Reid on the classification of non-normal Gorenstein del Pezzo
surfaces [Rei94]. We fix some notations we will use throughout the article (cf. §2.1 for the
terminology used).

Definition 2.12. LetX be a non-normal integral Gorenstein del Pezzo surface with normalisation
ν : Y → X. We say X is tame if H1(X,OX ) = 0.

One can characterise tame del Pezzo surfaces in terms of the conductor.

Theorem 2.13. Let X be a non-normal integral Gorenstein del Pezzo surface over an alge-

braically closed field. Then the conductor D ⊂ X is integral. Moreover, :

(1) X is tame if and only if D ≃ P1;

(2) (p− 1) divides h1(OX).

Proof. The integrality of the conductor follows from [Rei94, Lemma, page 718] for integral del
Pezzo surfaces. Then, (1) follows from the proof of [Rei94, Corollary 4.10], as D is irreducible.
(2) is proved in [Rei94, 4.11] �

We will repeatedly use the following:

Lemma 2.14. Let π : X → Y be a proper birational morphism of k-surfaces. If X is a regular

(resp. canonical) del Pezzo surface, then so is Y . If X is a regular (or canonical) weak del Pezzo

surface, then also Y is a canonical weak del Pezzo surface.

Proof. We only prove the case where X is a regular weak del Pezzo surface, as the others are
similar. As −KX is π-big and π-nef, we conclude that Y has canonical singularities by the
negativity lemma [Tan18b, Lemma 2.11]. As −KY = π∗(−KX) we conclude by projection
formula that −KY is big and nef. �

From the point of view of the MMP, it is natural to consider surfaces of del Pezzo type. For
their basic properties we refer to [BT22, Section 2.3].

Definition 2.15. We sayX is a surface of del Pezzo type over k ifX is a projective k-variety with
H0(X,OX) = k and there exists ∆ ≥ 0 such that (X,∆) is a log del Pezzo pair (i.e. (X,∆) klt
and −(KX +∆) is big and nef).

The following describes the Picard scheme of del Pezzo surfaces.
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Proposition 2.16. Let X be a surface of del Pezzo type. Then Pic0X/k is a unipotent smooth

commutative k-group scheme of finite type over k of dimension h1(X,OX ).

Proof. By Serre duality, we have H2(X,OX) = H0(X,ωX) = 0 and therefore by [FGI+05,
Corollary 9.4.18.3, Corollary 9.5.13 and Remark 9.5.15] the group scheme Pic0X/k is smooth of

dimension h1(OX ). We are left to show that Pic0X/k is unipotent. For this, we can suppose k is

separably closed. By [BT22, Theorem 1.3], there exists n > 0 such that for every L ∈ Pic0(X)
we have L⊗pn ≃ OX . By density of rational points [Poo17, Proposition 3.5.70] and since Pic0X/k
is reduced, we conclude that taking pn-powers on Pic0X/k is the zero homomorphism and thus

Pic0X/k is unipotent. �

3. BOUNDS ON THE ANTICANONICAL VOLUME AND EFFECTIVE VERY AMPLENESS

In this section we prove bounds on the anticanonical volume and very ampleness statements
for canonical del Pezzo surfaces over imperfect fields.

3.1. Bounding volumes. We start by bounding the volume of canonical del Pezzo surfaces in
terms of their thickening exponent ǫ(X/k) (see [Tan19, Definition 7.4] and Definition 3.2 below).
First, we need an explicit bound on the Cartier index of a klt surface singularity. For a Q-factorial
variety X, we define its Cartier index to be the smallest integer n > 0 such that for every Weil
divisor D in X, the Weil divisor nD is Cartier.

Lemma 3.1. Let X be the spectrum of a local k-algebra (R,m), and let x be the closed point

corresponding to m. Suppose (X,∆) is a klt surface pair for some ∆ ≥ 0. Let f : Y → X
be the minimal resolution of singularities, with exceptional divisor E =

∑n
i=1Ei. Let M =

(Ei ·k Ej)
n
i,j=1 be the intersection matrix and let d = det(M). Then there exists dx such that

d = dx[k(x) : k] and the Cartier index of X divides dx.

Proof. Recall that X is rational and Q-factorial by Proposition 2.6. Let D be a Weil integral
divisor on X and write f∗D = f−1

∗ D +
∑n

i=1 aiEi for some ai ∈ Q.
We claim it is sufficient to show dxai is integral. Indeed, then f∗(dxD) is an integral divisor on

a regular surface and thus f∗(dxD) is Cartier. If we write KY +∆Y = f∗(KX+∆), then ∆Y is
effective by the negativity lemma and (Y,∆Y ) is klt. As f∗(dxD)−(KY +∆Y ) is f -nef and big,
and f∗(dxD) is f -trivial, there exists b0 > 0 such that for all b ≥ b0 we have that bf∗(dxD) =
f∗Ab for a Cartier divisor Ab on X by the base point free theorem for excellent surfaces [Tan18b,
Theorem 4.4]. Then f∗(dxD) = (b0 + 1)f∗dxD− b0f

∗dxD = f∗(Ab0+1 −Ab0) and thus dxD
is Cartier.

We denote by (ai) (resp. f−1
∗ D·Ej) the vector (a1, . . . , an) (resp. (f−1

∗ D·E1, . . . , f
−1
∗ D·En))

By the projection formula,

(ai) =M−1(−f−1
∗ D ·Ej) =

1

dx[k(x) : k]
A(f−1

∗ D ·Ej),

where A is a matrix with integer coefficients. We have (−f−1
∗ D · Ej) =

∑
jmj [k(yj) : k] for

some mj ∈ Z and, as k(x) ⊂ k(yj), we conclude that [k(x) : k] divides (f−1
∗ D · Ej), thus

showing dxai is an integer. �

We bound the volume of canonical del Pezzo surfaces, generalising the regular case proven in
[Tan19, Theorem 4.7].
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Definition 3.2 ([Tan21, Definition 5.1, Definition 7.4]). Let X be a normal variety over k such
that k is algebraically closed in K(X). We define the Frobenius length of geometric non-

normality ℓF (X/k) as

ℓF (X/k) := min
{
e ≥ 0 | (X ×k k

1/pe)normred is geometrically normal over k1/p
e
}
.

Set R to be the local ring of X ×k k
1/p∞ at the generic point. We define the thickening exponent

ǫ(X/k) as the non-negative integer such that lengthRR = pǫ(X/k)

For a discussion of the properties of ℓF (X/k) and ǫ(X/k), we refer the reader to [Tan21,
Section 5, Section 7].

We fix some notation. For d ≥ 1, we denote the Hirzebruch surface PP1(OP1 ⊕ OP1(−d))
by Fd, a closed rational fibre by F and the negative section by Cd. The contraction of Cd is
the morphism p : Fd → P(1, 1, d) and we denote by L := p∗F the generator of its class group.
Recall that L ∈ |OP(1,1,d)(1)|, and that L2 = 1

d .

Lemma 3.3. The divisor class nKP(1,1,d) is Cartier if and only if d | n(d+ 2).

Proof. As KP(1,1,d) ∼ (−d− 2)L and the Cartier index of L is d, the lemma is immediate. �

Proposition 3.4. Let X be a canonical del Pezzo surface. Then

(1) if X is geometrically normal, then it is geometrically canonical and K2
X ≤ 9;

(2) if X is not geometrically normal, then p ∈ {2, 3} and

(a) if p = 3, ℓF (X/k) = 1 and K2
X ≤ 12 · 3ǫ(X/k).

(b) if p = 2, ℓF (X/k) ≤ 2 and K2
X ≤ 16 · 2ǫ(X/k).

Proof. We can assume k to be separably closed and we will repeatedly use the fact that ǫ(X/k)
is a k-birational invariant [Tan21, Proposition 7.10]. If X is geometrically normal, then we
conclude by Proposition 2.11. So we suppose that X is not geometrically normal and p = 2, 3
by [BT22, Theorem 3.7.(1)] . The bounds on ℓF (X/k) are proven in [BT22, Theorem 3.7.(2)-
(3)].

Let Z → X be the minimal resolution of X. As Z is a regular weak del Pezzo surface, by
Lemma 2.14 a KZ-MMP will end with a regular weak del Pezzo surface Y admitting a Mori
fibre space f : Y → B, i.e. f is a contraction where −KY is f -ample and dim(B) ≤ 1. Note
that K2

Y ≥ K2
Z = K2

X .
If B = Spec(k), then Y is a regular del Pezzo surface and we conclude by [Tan19, Theorem

4.7]. If B is a curve, as Y is weak del Pezzo, the cone theorem [Tan18b, Theorem 2.14] implies
that the Mori cone of Y is

NE(Y ) = R+[F ] + R+[Γ],

where F the class of a closed fibre of f and Γ is the class of an integral curve with self-intersection
Γ2 ≤ 0. If KY ·k Γ < 0, then Y is a regular del Pezzo surface by Kleiman’s criterion and we
conclude again by [Tan19, Theorem 4.7].

If KY ·k Γ = 0, by the Hodge index theorem Γ2 < 0 and, if we denote kΓ = H0(Γ,OΓ),
by adjunction the equality Γ2 = degk ωΓ/k = −2[kΓ : k] holds. Then there exists a bira-
tional contraction Y → T where T is a canonical del Pezzo surface of Picard rank 1 with a
unique singular point x and K2

T = K2
Y . As kΓ = k(x) by [Kol13, Corollary 10.10], we have

Γ2 = −2[k(x) : k], which implies that the Cartier index of T divides 2 by Lemma 3.1. If T is
geometrically normal, it is geometrically canonical by [BT22, Theorem 3.7]. Moreover, as Tk
has Picard rank 1 and a singular point, we conclude K2

X ≤ 8. If T is not geometrically normal
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and g : V = (T ×k k)
norm
red → T is the normalised base change where KV + (p − 1)C = g∗KT

we deduce that 2pℓF (T/k)KV is Cartier by [Tan21, Theorem 5.12]. By the classification of the
normalised base changes of canonical del Pezzo surfaces with Picard rank 1 [PW22, Theorem
4.1], the bounds on the Frobenius length [BT22, Theorem 3.7] and Lemma 3.3 we deduce:

• if p = 3, then 6KV is Cartier and thus V ≃ P(1, 1, d) for d ∈ {1, 2, 3, 4, 6, 12} and
C = L;

• if p = 2, then 8KV is Cartier and thus V ≃ P(1, 1, d) for d ∈ {1, 2, 4, 8, 16} and C = L
or 2L by [Tan19, Proposition 4.1].

Using [Tan19, Lemma 4.5] we have

pǫ(X/k)(g∗KT )
2 = pǫ(X/k)(KV + (p− 1)C)2 = K2

T .

If p = 3, we have V = P(1, 1, d), C = L and thus K2
T ≤ (dL)2 · 3ǫ(X/k) = d · 3ǫ(X/k) ≤

12 · 3ǫ(X/k). Similarly, in the case where p = 2 we obtain that K2
T ≤ 16 · 2ǫ(X/k). �

Using the bounds on the anticanonical volume, we can restrict the possibilities for the nor-
malised base changes of non-normal canonical del Pezzo surfaces obtained in [PW22, Theorem
4.1]. For the analogous result in the regular case, see [Tan19, Theorem 4.6].

Theorem 3.5. Let X be a canonical del Pezzo surface. Let ν : Y → (X ×k k)red be the normal-

isation morphism and let f : Y → X ×k k be the composite morphism.

(1) If X is geometrically normal, then it is geometrically canonical.

(2) If p ≥ 5, then X is geometrically normal.

(3) If p = 3 andX is not geometrically normal, then ℓF (X/k) = 1 and (Y,C) is isomorphic

to (P(1, 1, d), L) for some d ≤ 12.

(4) If p = 2 and X is not geometrically normal, then ℓF (X/k) ∈ {1, 2} and (Y,C) is

isomorphic to one of the following:

(a) (P2, L) and ℓF (X/k) = 1;

(b) (P2, C ∈ |2L|);
(c) (P1 × P1, C ∈ |F1 + F2|) and ℓF (X/k) = 1;

(d) (P1 × P1, Fi) and ℓF (X/k) = 1;

(e) (Fd,D ∈ |Cd + F |), where Cd is the negative section and ℓF (X/k) = 1 for 2 ≤
d ≤ 14;

(f) (Fd, Cd) and ℓF (X/k) = 1 for 2 ≤ d ≤ 12;

(g) (P(1, 1, d), 2L) for 2 ≤ d ≤ 16.

Proof. By Proposition 3.4, we are only left to prove the classification in (3) and (4). Suppose
p = 3. The only possible normalised base change is P(1, 1, d) by [Tan19, Proposition 4.1 and
Remark 4.3]. On the other hand, by Proposition 3.4, we have K2

X = pǫ(X/k)d ≤ 12 · pǫ(X/k).
Suppose p = 2. The list of possibilities without the bounds on d is proved in [Tan19, Propo-

sition 4.1]. It is now sufficient to note that in Case (4e) K2
X = pǫ(X/k)(d + 2), in Case (4f)

K2
X = pǫ(X/k)(d + 4), and in Case (4g) K2

X = pǫ(X/k)d. Using Proposition 3.4 we deduce the
desired bounds on d. �

3.2. Effective Kodaira vanishing and very ampleness on del Pezzo surfaces. In this section
we prove an effective version of the Kawamata–Viehweg vanishing theorem on canonical del
Pezzo surfaces. From this we deduce bounds on the effective global generation and very ample-
ness for the anti-pluricanonical linear systems.

We start by giving an effective version of [PW22, Theorem 1.9] in the 2-dimensional case.



10 FABIO BERNASCONI AND GEBHARD MARTIN

Proposition 3.6. Let X be a canonical del Pezzo surface and let A be a big and nef Cartier

divisor on X. Then

(1) if p > 3, then H1(X,OX(−A)) = 0;

(2) if p = 3, then H1(X,OX(−dA)) = 0 if d ≥ 2;

(3) if p = 2, then H1(X,OX(−dA)) = 0 if d ≥ 4.

If X is a normal Gorenstein del Pezzo surface, the same results hold if A is ample.

Proof. We let Am = OX(mA) for m ∈ Z. We fix d > 0. We show that H1(X,A−dn) = 0
for n sufficiently large. If A is ample, we conclude by Serre duality and Serre vanishing. If
A is only big and nef and X is a canonical del Pezzo surface, by the base point free theorem
[Ber21, Proposition 2.1] there is a birational contraction π : X → Y such that A = π∗H , where
H is an ample Cartier divisor and by Lemma 2.14 Y is a del Pezzo surface with canonical sin-
gularities. Thus the singularities of Y are rational by Proposition 2.6 and the projection formula
implies H1(X,A−dn) = H1(Y,H−dn). As Y is a normal, we can apply Serre duality to deduce
H1(Y,H−dn) ≃ H1(Y, ωX ⊗Hdn), which vanishes for n large enough by Serre vanishing.

Suppose H1(X,A−d) 6= 0. Without loss of generality by the previous paragraph, we can as-
sume F ∗ : H1(X,A−d) → H1(X,A−pd) has a non-trivial element ζ in the kernelH1

fppf(X,αA
−d
).

By [PW22, Theorem 2.11], associated to ζ there exists a degree p purely inseparable morphism
π : Z → X such that Z is an integral Gorenstein surface with ωZ = π∗(ωX(−(p − 1)dA)).
Let ν : Znorm → Z be the normalisation and let µ : Y := (Znorm ×k k)

norm
red → Znorm be the

normalised base change to the algebraic closure. We denote by Γ the divisorial part of the ramifi-
cation locus. We have OZnorm(KZnorm + Γ) = ν∗(ωZ) and there exists an effective Weil divisor
D ≥ 0 such that KY + (p− 1)D = µ∗KZnorm by [PW22, Theorem 1.1], we conclude

KY + (p− 1)D + µ∗Γ = f∗(KX − (p − 1)dA),

where f = π ◦ ν ◦ µ. Consider a general curve C on Y of genus g ≥ 1 so that C is contained in
the smooth locus of Y and C · ((p− 1)D + µ∗Γ) ≥ 0. Therefore KY ·C < 0, and the bend and
break lemma [Kol96, Chapter II, Theorem 5.8] shows that for every point x ∈ C there exists a
rational curve Lx such that

−(KY + (p− 1)D + µ∗Γ) · Lx ≤ 4
−(KY + (p− 1)D + µ∗Γ) · C

−KY · C
≤ 4,

as −(KY + (p− 1)D + µ∗Γ) is big and nef. Since −KX is ample, we infer the inequality:

f∗((p− 1)dA) · Lx < f∗(−KX + (p− 1)dA) · Lx ≤ 4.

As A = π∗H where H is an ample Cartier divisor and x is a general point on C , we have
f∗A · Lx ≥ 1 and thus we have (p− 1)d ≤ 3, which concludes the proof. �

Lemma 3.7. Let X be a canonical del Pezzo surface such that X is not geometrically normal.

Let A be a big and nef Cartier divisor on X. Then

(1) if p = 3, then OX(3A) is globally generated;

(2) if p = 2 and ℓF (X/k) = 1, then OX(2A) is globally generated;

(3) if p = 2 and ℓF (X/k) = 2, then OX(4A) is globally generated.

Proof. The proof is the same as [Tan19, Theorem 3.5]. There is a factorisation of the iterated
Frobenius morphism by [Tan21, Theorem 5.9]:

F
ℓF (X/k)

X×kk
: X ×k k → (X ×k k)

norm
red

µ
−→ X ×k k,
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where (X ×k k)
norm
red is a toric variety by Theorem 3.5. Thus µ∗A is globally generated and also

(F ℓF (X/k)X×kk
)∗A = Ap

ℓF (X/k)
. �

We recall the following very ampleness criterion for line bundles. For the notion of Castelnuovo–
Mumford regularity and its basic properties we refer to [Laz04, Section 1.8].

Proposition 3.8 ([Tan21, Lemma 11.2]). Let X be a geometrically irreducible k-projective va-

riety of dimension n. Let A be a globally generated ample line bundle and suppose L is a line

ample which is 0-regular with respect to A. Then A⊗ L is very ample.

The following is a generalisation of [Tan19, Theorem 3.5] including the case of canonical del
Pezzo surfaces.

Proposition 3.9. LetX be a canonical del Pezzo surface such thatX is not geometrically normal.

Then

(1) if p = 3, then ω−9
X is very ample;

(2) if p = 2 and ℓF (X/k) = 1, then ω−7
X is very ample;

(3) if p = 2 and ℓF (X/k) = 2, then ω−12
X is very ample.

Proof. By Lemma 3.7 and Proposition 3.8 it is sufficient to verify that for p = 3 (resp. p =
2, ℓF (X/k) = 1 and p = 2, ℓF (X/k) = 2) the line bundle ω−6

X (resp. ω−5
X and ω−8

X ) is 0-regular
with respect to ω−3

X (resp. ω−2
X and ω−4

X ) to show the statement. We prove only the case p = 2

and ℓF (X/k) = 2 as the others are analogous. In this case, H1(X,ω−8
X ⊗ω4

X) = H1(X,ω−4
X ) =

H1(X,ω5
X) = 0 by Proposition 3.6 and H2(X,OX ) = H0(X,ωX) = 0. �

We now show the effective statements on very ampleness for the pluri-anticanonical systems.

Theorem 3.10. Let X be a canonical del Pezzo surface. Then ω−12
X is very ample.

Proof. If X is geometrically normal, then it is geometrically canonical by Proposition 2.11 and
ω⊗−6
X is very ample by [BT22, Proposition 2.14]. If X is not geometrically normal, we apply

Proposition 3.9. �

4. BOUNDS ON THE IRREGULARITY

In this section we study geometrically integral geometrically non-normal Gorenstein del Pezzo
surfaces X. The additional condition on geometric integrality allows to find additional con-
straints on the normalised base changes to the algebraic closure and the irregularity of X.

4.1. A bound on γ(X/k) for geometrically integral varieties. Given a geometrically integral
normal variety X over k, we relate the δ-invariant measuring the singularities in codimension
1 of Xk with the capacity of denormalising extensions γ(X/k) introduced by Tanaka [Tan21,
Section 4].

Definition 4.1. For an integral k-variety X with normalization ν : Y → X with ramification
C ⊆ Y and conductor D ⊆ X, we define the δ-invariant of X over k as

δ(X/k) := max
η∈D

lengthOD,η
(OC,η/OD,η),

where η runs over all generic points of irreducible components of D.

Proposition 4.2. Let X be a geometrically integral normal variety over a field k. Then

ℓF (X/k) ≤ γ(X/k) ≤ δ(Xk̄/k̄).
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Proof. The inequality ℓF (X/k) ≤ γ(X/k) is shown in [Tan21, Proposition 8.7], so we are left
to show γ(X/k) ≤ δ(Xk̄/k̄). As the statement can be checked on an open covering of X, we
can assume that the conductor D of Xk̄ is irreducible, with generic point η.

By definition of γ(X/k) [Tan21, Definition 4.1], we can find a sequence of purely inseparable
field extensions k =: k0 ⊆ k1 ⊆ . . . ⊆ kγ(X/k) such that, if we inductively define X0 := X and
Xi := (Xi−1,ki)

norm, then Xi,ki+1
is not normal and there is no longer sequence of fields with

this property. In particular, Xγ(X/k) is geometrically normal and the normalization ν : Y → Xk̄
of Xk̄ factors as

ν = ν1 ◦ · · · ◦ νγ(X/k) : Y = Xγ(X/k),k̄ → . . .→ X0,k̄ = Xk̄

Note that each Xi,k̄ has the property (S2), being the base change of a normal variety along a field
extension.

Now, after localizing at η, the factorization of ν corresponds to an ascending chain of subrings
OXk̄ ,η = OX0,k̄ ,η

⊆ OX1,k̄ ,η
. . . ⊆ OXγ(X/k),k̄ ,η

= OY,η. Each inclusion OXi−1,k̄ ,η
⊆ OXi,k̄,η

is strict: otherwise νi would be an isomorphism in codimension 1, hence so would be Xi →
Xi−1,ki . Since Xi is normal and Xi−1,ki has property (S2), this would imply that Xi−1,ki is
normal as well, contradicting our choice of ki.

By definition, we have isomorphisms of (OXk̄ ,η)-modules

OY,η/OXk̄ ,η
∼= (OY,η/Cη)/(OXk̄ ,η/Cη)

∼= OC,η/OD,η

Note that both sides are annihilated by the conductor ideal Cη, hence this is also an isomorphism
of (OD,η)-modules. Therefore, by strictness of OXi−1,k̄ ,η ⊆ OXi,k̄,η for every i ≤ γ(X/k), we
have

γ(X/k) ≤ lengthOX
k̄
,η
(OY,η/OXk̄ ,η) = lengthOD,η

(OC,η/OD,η) = δ(Xk̄/k̄),

as claimed. �

Proposition 4.3. LetX be a geometrically integral normal Gorenstein variety. Then, ℓF (X/k) ≤
γ(X/k) ≤ δ(Xk̄/k̄) = maxη∈D lengthOD,η

(OD,η). In particular, if every component of D is

reduced, then ℓF (X/k) ≤ 1.

Proof. By Proposition 4.2, we only have to show the last equality. Let η be the generic point
of an irreducible component of the conductor D ⊂ X. The Gorenstein condition implies
lengthOD,η

OC,η = 2 lengthOD,η
OD,η by [FS20, Proposition A.2], which shows that δ(Xk/k) =

maxη∈D lengthOD,η
OD,η by [Sta, Tag 00IV], as claimed.

The last statement is immediate as lengthOD,η
OD,η = 1 if D is reduced. �

We can improve the bounds of [BT22] in the geometrically integral case.

Corollary 4.4. Let X be a geometrically integral normal Gorenstein del Pezzo surface. Then

ℓF (X/k) ≤ 1. Moreover, if L is a torsion line bundle, then L⊗p ∼= OX . In particular, Pic0
Xk̄/k̄

∼=

G
h1(X,OX)

a,k̄
.

Proof. By Theorem 2.13, the conductor D is reduced and thus we can apply Proposition 4.3 to
conclude. The proof of the assertion on torsion line bundles follows as in [BT22, Theorem 4.1].
For the last statement, by Proposition 2.16 the Picard scheme Pic0

Xk̄/k̄
is a smooth commutative

unipotent algebraic group of dimension h1(X,OX ). As it is annihilated by p, we conclude by
[Ser88, Proposition VII.11]. �

https://stacks.math.columbia.edu/tag/00IV
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The previous analysis allows to obtain better estimates for the global generation than Proposition 3.9
in the geometrically integral canonical case.

Corollary 4.5. Let X be a geometrically integral canonical del Pezzo surface. Let A be a big

and nef Cartier divisor on X and suppose X is not geometrically normal. Then p ∈ {2, 3} and

the following hold:

(1) If p = 3, then OX(3A) is globally generated and ω−9
X is very ample;

(2) If p = 2, then OX(2A) is globally generated and ω−7
X is very ample.

Proof. By Corollary 4.4, ℓF (X/k) = 1 and we conclude by combining Lemma 3.7 and Proposition 3.9.
�

4.2. Anti-pluricanonical maps of non-normal del Pezzo surfaces. In this section we assume
k is algebraically closed. Let X be a non-normal integral Gorenstein del Pezzo surface with
normalization ν : Y → X with ramification C ⊆ Y and conductor D ⊆ X. As Gorenstein
del Pezzo surfaces have the property (S2), by [Rei94, Theorem, Section 2.6], there is an exact
sequence

0 → ωX → ν∗ν
∗ωX

Tr ◦Res
→ ωD → 0,

where Res is the pushforward of the classical residue map ωY (C) → ωC (where we identify
ωY (C) ∼= ν∗ωX and ωY (C)|C ∼= ωC by adjunction). The homomorphism Tr is the trace map
which, over the generic point η ofD, is given by the (OD,η)-dual of the inclusion OD,η ⊆ ν∗OC,η

by [Rei94, Remark 2.9]. Tensoring with ω−(n+1)
X and applying the projection formula we obtain

0 → ω−n
X → ν∗ν

∗ω−n
X → ωD ⊗ ω

−(n+1)
X → 0.

As ν∗ν∗ω
−⊗n
X is canonically isomorphic to ν∗(ω

−⊗n
Y (−nC)), taking global sections, we deduce

the following:

Lemma 4.6. We have the following equality of subspaces of H0(Y, ω−n
Y (−nC)):

ν∗H0(X,ω−n
X ) = Ker(H0((Tr ◦Res)⊗ ω

⊗−(n+1)
X ))

We now prove a useful lower bound on the dimension of the space of anti-pluricanonical
sections on del Pezzo surfaces. It will be the main tool to bound the irregularity of del Pezzo
surfaces.

Corollary 4.7. There is an inclusion of k-vector spaces:

V := {s ∈ H0(Y,OY (−n(KY + C))) | s|C = 0} ⊆ ν∗H0(X,ω−n
X ).

Thus if ω−n
X is globally generated, then

h0(X,ω−n
X ) ≥ dimV + 2.

Proof. By the natural identifiation ωY (C)|C ∼= ωC given by adjunction, the space V is equal
to the kernel of the homomorphism H0(Res⊗ω−n−1

X ), hence it is contained in the kernel of
H0((Tr ◦Res)⊗ ω−n−1

X ) = ν∗H0(X,ω−n
X ) by Lemma 4.6.

If ω−n
X is globally generated, then the linear system |ν∗H0(X,ω−n

X )| has no base points on
C . Since all sections in V vanish on C and ω−1

X is ample there are at least two more linearly
independent sections of ν∗H0(X,ω−n

X ) that are non-zero when restricted to C , thus concluding
the inequality. �
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4.3. Irregularity of geometrically integral l.c.i. del Pezzo surfaces. We prove effective bounds
on the values of the irregularity of locally complete intersection (lci) del Pezzo surfaces.

Proposition 4.8. Let X be a geometrically integral normal locally complete intersection del

Pezzo surface over a field k of characteristic p > 0. Let ν : Y → Xk̄ be the normalization of Xk̄

and let C ⊆ Y be the ramification of ν. Then, one of the following holds:

(1) h1(X,ωnX) = 0 for all n ∈ Z.

(2) p = 3, (Y,C) = (P2, 2L), h1(X,OX ) = 2, and h1(X,ωnX) = 0 for all n ≥ 2.

(3) p = 2, (Y,C) = (P2, 2L), h1(X,OX ) = 1, and h1(X,ωnX) = 0 for all n ≥ 2.

(4) p = 2, (Y,C) = (P(1, 1, 2), 2L), h1(X,OX ) = 1, and h1(X,ωnX) = 0 for all n ≥ 2.

Proof. If X is geometrically normal, then (1) holds by [HW81, Proposition 4.2]. If X is not
geometrically normal and the ramification divisor contains a reduced component, then Xk is
tame and h1(X,ω⊗n

X ) = 0 for all n ∈ Z by [Rei94, Corollary 4.10]. Therefore, by [PW22,
Theorem 4.1], we may assume that p ∈ {2, 3}, h1(X,OX ) > 0 and (Y,C) = (P(1, 1, d), 2L)
for some d ≥ 1 where L is a line through the vertex of the cone.

Choose weighted coordinates x, y, z of degree 1, 1, d on Y such that L = {x = 0}, hence
2L =

{
x2 = 0

}
in weighted coordinates. Let n ≥ 1 and Vn,d ⊆ H0(P(1, 1, d),O(nd)) be

the subspace of sections vanishing along 2L. Then, Vn,d consists of weighted homogeneous

polynomials of the form x2fnd−2(x, y, z), hence dimVn,d =
∑n

j=1(jd − 1) = n2+n
2 d − n. As

ν∗ωXk̄
∼= O(−dL), we have ν∗ω−n

Xk̄

∼= O(ndL). By Corollary 4.7 we have

(4.1) h0(X,ω−n
X ) ≥

{
n2+n

2 d− n.
n2+n

2 d− n+ 2 if, additionally, ω−n
X is globally generated

By the Riemann–Roch formula [Tan18b, Theorem 2.10] we have

h0(X,ω−n
X )− h1(X,ω−n

X ) = 1− h1(X,OX ) +
n2 + n

2
K2
X = 1− h1(X,OX ) +

n2 + n

2
d.

Thus if we assume h1(X,ω−n
X ) = 0 we deduce from Equation (4.1) that

(4.2) h1(X,OX ) = 1− h0(X,ω−n
X ) +

n2 + n

2
d ≤

{
n+ 1

n− 1 if, additionally, ω−n
X is g.g.

We also recall Maddock’s bound [Mad16, Corollary 1.2.6]: if h1(X,ωnX ) 6= 0 but h1(X,ωpnX ) =
0, then

(4.3) h1(X,OX ) ≥
nd(p − 1)(3 + n(2p − 1))

12
.

Now assume p = 3. By Serre vanishing and h1(OX) 6= 0, there exists a largest N ≥ 0 such

that h1(X,ω−N
X ) = h1(X,ω

(N+1)
X ) 6= 0. By (4.2) and (4.3), we have the following chain

N + 2 ≥ h1(X,OX) ≥
(N + 1)d(p − 1)(3 + (N + 1)(2p − 1))

12
=

(N + 1)d(8 + 5N)

6
,

hence N = 0, d = 1, showing h1(X,OX ) ≤ 2. Finally h1(X,OX ) = 2 by Theorem 2.13.
Now assume p = 2. Then, the argument of the previous paragraph yields

(4.4) N + 2 ≥ h1(X,OX ) ≥
(N + 1)d(p − 1)(3 + (N + 1)(2p − 1))

12
=

(N + 1)d(N + 2)

4
,
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hence N ≤ 3. Therefore, h1(X,ω−4
X ) = 0 and, by Corollary 4.5, ω−4

X is globally generated, so
h1(X,OX ) ≤ 3 by (4.2). If h1(X,OX ) = 1, then N = 0 and d ∈ {1, 2} by (4.4) and we get
Cases (3) and (4).

So, it remains to exclude the possibility h1(X,OX ) ≥ 2 in characteristic p = 2. By Corollary 4.5,
ω−2
X is globally generated, so by (4.4) the inequality h1(X,OX ) ≥ 2 implies N = 2, d = 1, and
h1(X,OX ) = 3.

Seeking a contradiction, assume that there exists an X with these invariants. Since N = 2,
we have H1(X,ω3

X) 6= 0 and H1(X,ω6
X ) = 0. Let Z → X be a non-trivial αω3

X
-torsor. and let

kZ := H0(Z,OZ). Note that Z is an l.c.i. del Pezzo surface by [Mad16, Theorem 1.2.3] and by
[Mad16, Equation (1.2.4)], we have [kZ : k](1 − h1(Z,OZ)) = 2 so that we have [kZ : k] = 2
and H1(Z,OZ) = 0. By [Mad16, Equation (1.2.5)] we then conclude that K2

Z = 16. Now, we
consider the following diagram:

(Zk̄)
norm //

(πk̄)
norm

��

Zk̄
//

πk̄
��

Z

π

��

f

%%❑
❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

(Xk̄)
norm // Xk̄

//

��

XkZ
//

��

X

��

Spec k̄ // Spec kZ // Speck,

where Zk̄ = Z ×Spec kZ Spec k̄. Since f and XkZ → X are finite of degree 2, the morphism
π is finite and birational. In particular, Z , considered as a kZ -scheme, is geometrically integral
and the induced map (πk̄)

norm of the normalisations is an isomorphism. As (Xk̄)
norm ∼= P2,

16 = K2
Z ≤ K2

(Zk̄)
norm = 9, reaching a contradiction. �

Corollary 4.9. LetX be a geometrically integral normal locally complete intersection del Pezzo

surface over a field k of characteristic p. Let ν : Y → Xk̄ be the normalization of Xk̄ and let

C ⊆ Y be the ramification of ν. Then, one of the following holds:

(1) h1(X,OX) = 0,K2
X ≥ 3, and ω−1

X is very ample.

(2) h1(X,OX) = 0, K2
X = 2, and ω−2

X is very ample.

(3) h1(X,OX) = 0, K2
X = 1, and ω−3

X is very ample.

(4) h1(X,OX) = 1, p = 2, (Y,C) ∈ {(P2, 2L), (P(1, 1, 2), 2L)}, and ω−6
X is very ample.

(5) h1(X,OX) = 2, p = 3, (Y,C) = (P2, 2L), and ω−7
X is very ample.

Proof. Claims (1), (2), and (3) are [HW81, Corollary 4.5] if X is geometrically normal and
[Rei94, Corollary 4.10] if X is not geometrically normal.

Let us prove Claim (4). By Proposition 4.8, we have p = 2 and the desired classification of
(Y,C). By Lemma 3.7, ω−2

X is globally generated. Using Proposition 4.8, it is easy to check that
ω−4
X is 0-regular with respect to ω−2

X . Claim (5) is proven similarly. �

4.4. Refinements in the regular and canonical case. We show various refinements of the
bounds of Proposition 4.8 in the case where we assume X to be a regular or canonical del Pezzo
surface. We start with the case p = 3.

Proposition 4.10. Let X be a geometrically integral canonical del Pezzo surface over a field k
of characteristic p = 3. Then, X is tame.
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Proof. Without loss of generality, we may assume that k is separably closed.
First, assume that X is regular. Seeking a contradiction, we assume that h1(X,OX ) 6= 0.

Let ν : Y → Xk̄ be the normalisation of Xk̄ and let C ⊆ Y be the ramification of ν. By
Proposition 4.8 and Serre duality, we know that h1(X,OX ) = 2, K2

X = 1, h1(X,ω−n
X ) = 0 for

n > 0, and (Y,C) = (P2, 2L).
First, we claim that h0(X,ω−n

X ⊗ L) = 0 for all non-trivial torsion line bundles L and for
n ∈ {0, 1}. Since X is reduced, this holds if n = 0. For the case n = 1, by the Riemann–Roch
theorem we have

χ(ω−1
X ⊗ L) = 0,

so if h1(X,ω−1
X ⊗L) 6= 0, then h1(X,ω2

X ⊗L−1) 6= 0 by Serre duality. Since ω6
X ⊗L−3 ∼= ω6

X

by Corollary 4.4 and h1(X,ω6
X ) = 0 by Proposition 4.8, there exists a non-trivial α(ω2

X⊗L−1)-
torsor Z → X such that Z is an l.c.i. del Pezzo surface. Moreover, by [Mad16, Equation (1.2.5)],
we have 2e(1−qZ) = 10 for some integers 0 ≤ e ≤ 1 and qZ ≥ 0, contradicting our assumption.

By Riemann–Roch, we have h0(X,ω−2
X ) = 2. Write

| − 2KX | = F + |M |

where F is the fixed part and M is the movable part of the linear system. Since M 6= 0, we have
F ∈ | − nKX + E| for some 0 ≤ n ≤ 1 and a divisor E such that OX(E) is torsion. By the
previous paragraph, we have h0(X,ω−n

X (E)) = 0, hence F = 0.
Since the linear system | − 2KX | does not have fixed components, its base locus Z is 0-

dimensional and we denote by A the ring of global section H0(Z,OZ). Since (−2KX)
2 = 4,

we have lengthk(A) = 4, so A is an Artinian k-algebra of length 4. As k is separably closed,
we can write A =

∏s
i=1Ai where each Ai is a local Artinian k-algebra of dimension ni over its

residue field ki and ki is a purely inseparable extension of k. Since

4 = lengthk(A) =

s∑

i=1

lengthk(Ai) =

s∑

i=1

ni[ki : k]

and p = 3, we have ki = k for at least one i. In other words, at least one of the base points of
| − 2KX | is a k-rational point P .

If P is in the image of the conductor D under the natural map Xk̄ → X, then P lies in the
non-smooth locus of X → Speck, so X cannot be regular at P by [FS20, Corollary 2.6]. Hence,
in this case, the proof is finished.

So, seeking a contradiction, assume that P is not in the image of D. Let P ′ be the unique
preimage of P under the map Y → Xk̄ → X. Since ν is an isomorphism around P ′, the point
P ′ lies in the base locus of ν∗|−2KXk̄

|. By Corollary 4.7, we know that C = 2L ∈ ν∗|−2KXk̄
|,

hence P ′ ∈ C and thus P is in the image of D under Xk̄ → X. This contradicts our choice of
P .

Finally, assume that X is canonical. By Proposition 2.6 we can replace X with its minimal
resolution, which is a regular weak del Pezzo surface. By running a KX -MMP we can suppose
X is a weak del Pezzo surface admitting a Mori fibre space structure π : X → B. If X is a
regular del Pezzo surface, we conclude by the previous case. If B is a curve and X is a weak
del Pezzo surface, then the generic fibre F is a regular conic. As p = 3, F is smooth by [BT22,
Lemma 2.17] and thus −KB is ample by [Eji19, Corollary 4.10.c]. Therefore H1(B,OB) = 0
and, as H1(X,OX ) = H1(B,OB) = 0 by the relative Kawamata–Viehweg vanishing theorem
[Tan18b, Theorem 4.2], we conclude. �
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In the following proposition, we describe the geometry of αωX
-torsors over wild regular del

Pezzo surfaces in characteristic p = 2. The reader should compare this with the construction of
the regular wild del Pezzo surfaces of degree 1 in [Mad16].

Proposition 4.11. Let X be a geometrically integral regular del Pezzo surface over a field k of

characteristic p = 2. Assume that h1(X,OX ) 6= 0. Then, p-deg(k) ≥ 2 and there exists an

αωX
-torsor Z → X such that Z satisfies the following properties:

(1) If K2
X = 2, then kZ := h0(Z,OZ) is a purely inseparable extension of k of degree 2 and

Z is a twisted form of P(1, 1, 2) over kZ .

(2) If K2
X = 1, then Z is a normal tame del Pezzo surface such that ǫ(Z/k) = 1, K2

Z = 8
and the normalised base change ((Zk)

norm
red , E) is (P2, L).

Proof. If X is not tame, then ρ(X) = 1 by Proposition 4.8. If p-deg(k) = 1, then X is geomet-
rically canonical by [FS20], contradicting h1(X,OX ) 6= 0.

By Proposition 4.8, we have h1(X,OX ) = h1(X,ωX) = 1, h1(X,ωnX) = 0 for n ≥ 2, and
K2
X ∈ {1, 2}. In particular, there exists a non-trivial αωX

-torsor f : Z → X. In the following,
we treat the cases K2

X = 2 and K2
X = 1 separately. We set kZ := H0(Z,OZ). Note that, by the

same proof as for the second paragraph of the proof of Proposition 4.10, we have h1(X,ωnX ⊗
L) = 0 for all torsion line bundles L and all n ≥ 2.

Assume K2
X = 2. In this case, by [Mad16, Equation (1.2.5)], we have [kZ : k] = 2,

h1(Z,OZ) = 0, and K2
Z = 8, where we compute the self-intersection over kZ . Now, consider

the commutative diagram

(Zk̄)
norm //

(πk̄)
norm

��

Zk̄
//

πk̄
��

Z

π

��

f

%%❑
❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

(Xk̄)
norm // Xk̄

//

��

XkZ
//

��

X

��

Spec k̄ // Spec kZ // Speck,

where Zk̄ = Z ×Spec kZ Spec k̄. As in the end of the proof of Proposition 4.8, the diagram
shows that Z is geometrically integral when considered as a kZ -scheme and (πk̄)

norm is an
isomorphism, hence (Zk̄)

norm ∼= (Xk̄)
norm ∼= P(1, 1, 2) by Proposition 4.8. In particular, we

have K2
Z = 8 = K2

(Zk̄)
norm , so Z is in fact geometrically normal. Therefore, Zk̄ ∼= P(1, 1, 2), so

Z is a twisted form of P(1, 1, 2) over kZ .
AssumeK2

X = 1. In this case, by [Mad16, Equation (1.2.5)] we have kZ = k and h1(Z,OZ) =
0. We first claim that Z is not geometrically reduced. Indeed, let ψ : P2 → X be the normalised
base change and consider the αψ∗ωX

-torsor T := Z ×X P2 → P2 obtained by base changing
along ψ. As ψ∗ωX is anti-ample, considering the exact sequence

0 = H0(P2, ψ∗ωpX) → H1
fppf(P

2, αψ∗ωX
) → H1(P2, ψ∗ωX) = 0

we have that H1
fppf(P

2, αψ∗ωX
) = 0, so that T → P2 is a trivial torsor and thus T is not reduced.

Since T → Zk̄ is generically an isomorphism, Z is not geometrically reduced.
Next, we claim that Z is normal. Suppose by contradiction it is not and let ν : Znorm → Z be

the normalisation. In this case, as ν is not an isomorphism, we have that K2
Znorm > 8, where we

calculate the self-intersection number over k. Let g : Znorm → X be the composition f ◦ ν. As
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X is regular and Znorm is integral, by [Mad16, Proposition 2.2.1] there exists a line bundle M
numerically equivalent to mKX for some integer m such that g is a non-trivial αM-torsor. In
particular, Znorm is Gorenstein and thus, as it is the normalization of a del Pezzo surface, Znorm

is also a del Pezzo surface. Therefore, m ≥ 0. We now distinguish two cases:
(1) if H0(Znorm,OZnorm) = k, by [Mad16, Equation (1.2.4)] we have 2(1 + m)2 =

K2
Znorm > 8, which implies that m > 1, contradicting Proposition 4.8;

(2) if [H0(Znorm,OZnorm) : k] = 2, we have that (1 + m)2 = K2
Znorm > 4, which also

implies that m > 1, contradicting Proposition 4.8 as well. Note that, here, we calculate
the self-intersection K2

Znorm over H0(Znorm,OZnorm).
Thus, Z must be normal.

By [Kle66, Example 1], we have that 8 = K2
Z = 2ǫ(Z/k)(K(Zk̄)

norm
red

+ E)2. Since Z is
geometrically non-reduced, we have ǫ(Z/k) ≥ 1, and since f is finite flat of degree 2 and
ǫ(X/k) = 0, we have ǫ(Z/k) ≤ 1, hence ǫ(Z/k) = 1. As Z is normal and Gorenstein, we can
apply [PW22, Theorem 4.1] to conclude that Z = P2 and E is a line. �

Proof of Theorem 1.1. Combine Proposition 4.8, Proposition 4.10 and Proposition 4.11. �

5. ON THE BAB CONJECTURE FOR SURFACES OVER ARBITRARY FIELDS

In this section, we prove boundedness results for del Pezzo surfaces over arbitrary fields.
We recall some terminology when discussing boundedness in birational geometry. For the

following definition, we say that a scheme X is a projective variety if X is integral, H0(X,OX )
is a field k and the natural morphism πX : X → Spec(k) is projective. We will always consider
X as a k-variety via the natural morphism πX .

Definition 5.1. We say that a class of projective varieties X is bounded (resp. birationally

bounded) if there exists a projective flat morphism Y → T of finite type Z-schemes such that
for every X ∈ X with k := H0(X,OX ), there exists a morphism Spec(k) → T and a k-
isomorphism (resp. a k-birational map) X → Y ×V Spec(k).

The Borisov–Alexeev–Borisov (BAB) conjecture states that mildly singular Fano varieties
form a bounded family in every dimension.

Conjecture 5.2 (BAB). For any rational number ε > 0, the class

Xd,ε = {X | X is a ε-klt Fano variety of dimension d}

is bounded.

Remark 5.3. The presence of the ε–klt hypothesis is necessary in the BAB conjecture, already
in dimension 2. Indeed, Gorenstein del Pezzo surfaces with general log canonical singularities
are not bounded as cones over elliptic curves of Proposition 2.9 show. Moreover, boundedness
already fails for klt del Pezzo surfaces as the set of weighted projective planes {P(1, 1, d)}d≥1
shows.

We discuss the BAB conjecture for surfaces defined over arbitrary fields. The result of [Ale94,
CTW17] shows that the class of geometrically ε-klt del Pezzo surfaces form a bounded family.
However, the conjecture is still open for ε-klt del Pezzo surfaces defined over an imperfect field.

In §5.1, we settle the BAB conjecture for geometrically integral canonical del Pezzo surfaces.
In the remaining two subsection, we discuss the general ε-klt case. In §5.2 prove boundedness of
the anticanonical volumes for ε-klt del Pezzo surfaces over imperfect fields. This, together with
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a bound on the Q-Gorenstein index proven in §5.3, implies the BAB Conjecture 5.2 for such
surfaces in characteristic p > 5 (cf. Theorem 5.12).

5.1. Boundedness of geometrically integral canonical del Pezzo surfaces. In [Tan19], Tanaka
proves boundedness for geometrically integral regular del Pezzo surfaces. As a consequence of
our results in §3 and §4, we can extend Tanaka’s result to the canonical case.

Theorem 5.4. The class

XdP,can = {X | X is a geometrically integral canonical del Pezzo surface}

is bounded.

Proof. AsX is geometrically integral, ǫ(X/k) = 0 and thus K2
X ≤ 16 by Proposition 3.4. Since

X is canonical, KX is Cartier and K2
X is an integer. By Proposition 4.8, Theorem 3.10, and

Riemann–Roch, there exists anN > 0 such that ω−12
X embedsX into Pnk for some n ≤ N . Again

by Proposition 4.8, and since K2
X ≤ 16, the possibilities for the Hilbert polynomial χ(X,ω−12

X )
are finite. Therefore, all X arise via pullback from a universal family over a suitable finite union
of Hilbert scheme of finite type over SpecZ [Kol96, Theorem 1.4]. �

5.2. Bounds on the volume of ε-klt del Pezzo surfaces. We prove an explicit bound for the
volumes of ε-klt del Pezzo surfaces, generalising the results of [Ale94, AM04] to imperfect
fields. To do so, we start with some elementary computations on surfaces of del Pezzo type
admitting a Mori fibration onto a curve. Recall the definition of surfaces of del Pezzo type from
Definition 2.15.

Lemma 5.5. Let X be a regular surface of del Pezzo type. Let π : X → B be a Mori fibre space

onto a regular curve and let Fb = π∗b, where b is a closed point of B. Then, there exists an

integral curve Γ such that

NE(X) = R+[Fb] + R+[Γ]

Moreover, setting dΓ := [H0(Γ,OΓ) : k] and mΓ = [k(Γ) : k(B)], there exists n ≥ 0 such

that

(5.1) Γ2 = −dΓ · n, KX · Γ = dΓ(n− 2),

and

(5.2) K2
X =

dΓ
m2

Γ

(8mΓ + 4n(1−mΓ)) ≤ 8.

Proof. The existence of Γ is a consequence of the cone theorem [Tan18b, Theorem 2.14], while
Equation (5.1) is proved in [BT22, Lemmas 4.3, 4.6]. To prove Equation (5.2), we write KX ≡
xFb + yΓ for some x, y ∈ Q. Set db = [k(b) : k]. As KX · Fb = −2db we conclude that
y = − 2

mΓ
. Therefore

dΓ(n− 2) = KX · Γ = xmΓdb +
2ndΓ
mΓ

,

which implies

KX ≡
dΓ(mΓ(n− 2)− 2n)

m2
Γdb

Fb −
2

mΓ
Γ.

A straightforward computation with intersection numbers then shows Equation (5.2). Finally, as
(1 −mΓ) ≤ 0, we have K2

X ≤ dΓ
mΓ

8 and, as dΓ ≤ mΓ, we conclude. �
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We now prove bounds on the anticanonical volume of ε-klt del Pezzo.

Theorem 5.6. Fix a rational number ε > 0. Then for every geometrically integral ε-klt del Pezzo

surface X, we have

K2
X ≤ max

{
9, 8 + 20

(1 − ε)2

ε

}
.

Proof. Let f : Y → X be the minimal resolution and write KY +
∑

i biEi = f∗KX . By the
ε-klt hypothesis and minimality of f , we have 0 < bi < 1 − ε. We run a KY -MMP which
ends with ψ : Y → Z , where Z is a regular projective surface admitting a Mori fibre space
structure π : Z → B. Since −(KY +

∑
i biEi) is big and nef, so is −(KZ + ∆Z), where

∆Z = ψ∗ (
∑
biEi). Moreover, K2

X = (KY +
∑

i biBi)
2 ≤ (KZ +∆Z)

2.
Suppose dim(B) = 0. ThenZ is a regular del Pezzo surface of Picard rank 1. As −(KZ+∆Z)

is ample, there exists 0 ≤ λ < 1 such that ∆Z ≡ −λKZ . Therefore we deduce (KZ +∆Z)
2 =

(1 − λ)2K2
Z ≤ K2

Z ≤ 9, where the last inequality follows by [Tan19, Theorem 1.2].
Suppose dim(B) = 1. Let Γ be the extremal curve described in Lemma 5.5. We write

∆Z = αΓ + G, where Supp(G) does not contain Γ. Since the Picard rank of Z is 2, G is a Q-
Cartier nef divisor. As −(KZ +∆Z) and −(KZ +αΓ) are big and nef classes, their intersection
with G is non-positive, and thus we have

(KZ +∆Z)
2 = (KZ + αΓ)2 + (KZ + αΓ) ·G+ (KZ +∆Z) ·G ≤ (KZ + αΓ)2.

Therefore, it is sufficient to bound the volume of del Pezzo surface pairs (Z,αΓ), where Z → B
is a Mori fibre space onto a curve, Γ is the extremal curve of Lemma 5.5 and 0 ≤ α < 1 − ε.
Note that

(5.3) (KZ + αΓ)2 = K2
Z + dΓα (2(n − 2)− nα) and 0 ≤ α < 1− ε.

Claim 5.7. The self-intersection of Γ is bounded:

n ≤
2

ε
.

Proof of Claim. By adjunction,

−2dΓ = (KZ + Γ) · Γ = (KZ + αΓ) · Γ + (1− ε− α)Γ2 + εΓ2.

As −(KZ +αΓ) is big and nef and 1− ε > α, we have (KZ +αΓ) ·Γ+ (1− ε−α)Γ2 ≤ 0 and
therefore we deduce 2dΓ ≥ εdΓ · n. �

If KZ · Γ ≤ 0, then (KZ + αΓ)2 ≤ K2
Z ≤ 8 by Lemma 5.5, and we are done. So, assume

KZ · Γ > 0, or, equivalently, n > 2. In this case, we have dΓ ≤ mΓ ≤ 5 by [BT22, Proposition
4.7]. Therefore by Equation (5.3) and Claim 5.7 we deduce the following series of inequalities:

(KZ + αΓ)2 = K2
Z + dΓα (2(n− 2)− nα)

≤ K2
Z + 5α (2n − 4) ≤ K2

Z + 5(1− ε)

(
4

ε
− 4

)

≤ 8 + 20
(1− ε)2

ε
. �

As a consequence, we can show a boundedness result for klt del Pezzo surfaces of bounded
Gorenstein index in characteristic p > 5 (cf. [HMX14, Corollary 1.8] for the analogue in charac-
teristic 0). In the following, we say that a klt del Pezzo surface is tame if h1(X,OX ) = 0.
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Corollary 5.8. Let n > 0 be an integer. Then, the classes

X tame
dP,n = {X | X is a geometrically integral tame klt del Pezzo surface s.t. nKX is Cartier} , and

X>5
dP,n =

{
X | X is a klt del Pezzo surface s.t. nKX is Cartier and char(H0(X,OX )) 6= 2, 3, 5

}

are bounded.

Proof. By [BT22, Corollary 5.5] and [BT22, Theorem 5.7], klt del Pezzo surfaces in charac-
teristic bigger than 5 are geometrically integral and tame, so it suffices to show that X tame

dP,n is
bounded.

So, let X ∈ X tame
dP,n . As X is

(
1
n

)
-klt, Theorem 5.6 implies that K2

X is bounded. As the Cartier

index of KX is fixed, the set of volumes
{
K2
X | X ∈ X tame

dP,n

}
is a finite set. As X has rational

singularities by Proposition 2.6, we can apply Riemann–Roch to compute for all t ≥ 1:

χ(X,OX (−ntKX)) = χ(X,OX ) +
nt(nt+ 1)K2

X

2
.

As and therefore there are only a finite number of possibilities for the Hilbert polynomials
Pn(t) := χ(X,OX (−ntKX)). Finally we apply [Kol85, Theorem 2.1.2] to conclude that XK
form a bounded family over Spec(Z[1/30]). In particular, there exists m := m(n) such that
−mnKXK

is very ample, and thus, by faithfully flat descent, −mnKX is very ample. Therefore,
there exists N = N(n) > 0 such −mnKX embeds X into some PN with a finite number of
possibilities for the Hilbert polynomial. This concludes that X belongs to a bounded family by a
classical Hilbert scheme argument. �

5.3. Bounds on the Q-Gorenstein index of ε-klt del Pezzo surfaces. After Corollary 5.8, to
conclude the proof of boundedness of ε-klt del Pezzo surfaces we are only left to prove a bound
on the Cartier index of KX depending only on ε. We start with the following result, which is
well-known over perfect fields.

Lemma 5.9. Fix ε ∈ Q>0 and n ∈ Z>0. Then, there exists N = N(ε, n) such that for every

ε-klt surface X admitting a minimal resolution f : Y → X with ρ(Y ) ≤ n, the divisor NKX is

Cartier.

Proof. Without loss of generality, we assume that X is the spectrum of a local ring and that
ρ(Y ) = n. Let E =

∑n
i=1Ei be the sum of the exceptional divisors of f and write KY +∑n

i=1 biEi = f∗KX for some 0 ≤ bi < 1−ε. By the base point free theorem [Tan18b, Theorem
4.2], it suffices to find an effective N = N(ε, n) such that Nbi is integral. For each i, we write
E2
i = −dEini for some integer ni > 0, where dEi = [H0(Ei,OEi) : k]. Moreover, for each

i 6= j we write Ei · Ej = dEjnij for some nij > 0. The bi are determined by the following
system of equations:

(5.4) (2− nj + bjnj) =
∑

i 6=j

binij for j = 1, . . . , n.

Since X is ε-klt, we have

(5.5) nj ≤
2

ε
.
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Indeed,

0 = (KY +
∑

biEi) · Ej ≥ (KY + bjEj) ·Ej

≥ −2dEj + (bj − 1) · (−dEjnj) ≥ −2dEj + εnjdEj .

Moreover, nij is bounded from above by [Kol13, Corollary 3.31 and Section 3.41] and [Sat23,
Appendix A]. As the ni and nij are integers, we only have a finite number of possibilities for the
coefficients in Equation 5.4, so we conclude that there are only finitely many possibilities for the
solutions bi, thus showing the existence of a N(ε, n) for which Nbi is integral. �

Lemma 5.10. LetX be a geometrically integral regular projective surface of del Pezzo type over

k, and let π : X → B be a Mori fibre space. Let ∆ =
∑
biEi be an effective Q-divisor such that

(X,∆) is klt and −(KX +∆) is nef. Then

(1) if dim(B) = 0, then
∑
bi ≤ 3;

(2) if dim(B) = 1, then
∑
bi ≤ 4.

Proof. Suppose dim(B) = 0. Let H be an ample Cartier divisor generating Num(X), and let
d ≥ 0 such that −KX ≡ dH . As X is a regular del Pezzo surface, we have K2

X ≤ 9 by [Tan19,
Theorem 1.2] and therefore d ≤ 3. Since X is regular, the Bi are Cartier divisors and thus∑
bi ≤ 3.
Suppose dim(B) = 1. Let Fb be a closed fibre of π and Γ the curve given by Lemma 5.5. Set

db := [k(b) : k]. We write ∆ = b0Γ +
∑
biEi as a sum of pairwise distinct prime divisors. As

0 ≥ (KX +∆) · Fb, adjunction implies

(5.6) 2db ≥ ∆ · Fb ≥ b0db +
∑

(Ei·Fb)6=0

bidb.

As KX · Γ = dΓ(n − 2), 0 ≥ (KX +∆) · Γ, and b0 ≤ 1, adjunction implies

(5.7) 2dΓ ≥ ndΓ − b0ndΓ +
∑

i

bi(Ei · Γ) ≥
∑

(Ei·Γ)6=0

bidΓ.

Summing the two equations and using that every curve on X intersects either Γ or Fb, we obtain
4 ≥

∑
bi, as desired. �

Proposition 5.11. Let ε > 0. Then, there exists a constant D(ε) such that for all geometrically

integral ε-klt del Pezzo surfaces X, the minimal resolution f : Y → X satisfies ρ(Y ) ≤ D(ε).

Proof. We can suppose k is separably closed. We follow the computations of [AM04, Theo-
rem 1.8], verifying that the explicit classification of rational Mori fibre spaces over algebraically
closed fields is not needed. Without loss of generality we can suppose ε < 2

3 . Since −KX is am-
ple, by Bertini’s theorem we can choose H ∼Q −KX to be an effective Q-divisor whose support
is regular and contained in the regular locus ofX such that (X,H) is ε-klt. Let f : Y → X be the
minimal resolution and writeKY +ΓY = f∗(KX+H) ∼Q 0 , where ΓY :=

∑
i∈I biEi+f

−1
∗ H

and bi < 1 − ε by hypothesis. We run a KY -MMP which ends with g : Y → Z , where Z is a
regular projective surface admitting a Mori fibre space structure π : Z → B. We summarise the
situation in the following diagram:

Y
g

//

f
��

Z

π
��

X B
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We fix the following notation:
• Ei,Z := g∗Ei.
• IZ := {i ∈ I | Ei,Z 6= 0}.
• ∆Y :=

∑
i∈I biEi.

• ∆Z :=
∑

i∈IZ
biEi,Z .

• ΓZ := g∗ΓY
Note that, by construction, g is a (KY +∆Y )-non-positive (resp. (KY +ΓY )-trivial) birational

contraction and (Z,∆Z) (resp. (Z,ΓZ)) is a log del Pezzo pair (resp. Calabi–Yau pair) with ε-klt
singularities.

The morphism g is a composition of blow-ups of closed points on regular surfaces by [Sta,
Tag 0C5R]. We can decompose g as

g : Y
ψ
−→W

ϕ
−→ Z,

where ψ and ϕ are proper birational morphisms between regular surfaces such that
(1) ϕ is a composition of blow-ups at closed points P such that multP (Γ̃Z) has multiplicity

at least ν := ε
2 , where Γ̃Z denotes the strict transform of ΓZ ;

(2) ψ is a composition of blow-ups at closed points P where multP (Γ̃Z) has multiplicity
< ν.

We first bound ρ(W/Z) in terms of ε. On Y , as f−1
∗ H is big and nef, we can apply Equation

(5.5) to obtain

(5.8) (g−1
∗ ΓZ)

2 ≥
∑

i∈I

b2i (g
−1
∗ Ei,Z)

2 ≥
∑

i∈IZ

bi(1− ε)

(
−2

ε

)
.

If dim(B) = 0 (resp. 1), we have
∑

i∈IZ
bi ≤ 4 (resp. ≤ 3) by Lemma 5.10, and thus

(5.9) (g−1
∗ ΓZ)

2 ≥

{
6− 6

ε if dim(B) = 0

8− 8
ε if dim(B) = 1.

After each of the blow-ups in ϕ, the self-intersection of Γ̃Z decreases by at least ν2, we deduce
that (g−1

∗ ΓZ)
2 ≤ Γ2

Z − ν2ρ(W/Z). If dim(B) = 0 (resp. 1), then Γ2
Z = K2

Z ≤ 9 (resp.
8) by [Tan19, Theorem 1.2] (resp. Lemma 5.5). Therefore (g−1

∗ ΓZ)
2 ≤ 9 − ν2ρ(W/Z) (resp.

8− ν2ρ(W/Z)). Together with (5.9) we conclude

(5.10) ρ(W/Z) ≤

{
(3ε+6)
εν2 if dim(B) = 0;
8
εν2

if dim(B) = 1.

As we chose ε < 2
3 we have (3ε+6)

εν2
< 8

εν2
.

We now prove a bound on ρ(Y/W ) depending only on ε. Let F =
∑

i∈J Fi be the sum of
the exceptional divisors of ϕ and let fi := coeffFi(ΓW ), where ΓW := ψ∗ΓY . As W and Z are

regular surfaces, Supp(F ) is a snc divisor. Let ψ : Y
s
−→ T

t
−→ W be a factorisation of ψ, where t

is a blow-up at a point P of W with exceptional divisor C . Write

KT + ΓT = KT + Γ̃Z +
∑

fiF̃i + cC ∼Q t
∗(KW + Γ̃Z +

∑
fiFi).

https://stacks.math.columbia.edu/tag/0C5R
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We claim that P must lie on the intersection of two components F1 and F2 of F . For this, let
JF := {i ∈ J | P ∈ Fi}. Then, since multP (Γ̃Z) ≤ ν < ε and fi < 1− ε, we have that

0 < c = (multP (Γ̃Z) +
∑

i∈JF

fi − 1) ≤ ν + |JF |(1− ε)− 1,

hence |JF | ≥ 2. Since Supp(F ) is an snc divisor, this implies |JF | = 2, as desired. This
argument can be repeated for each blow-up T →W factorising Y → W .

As the number of nodes of F is bounded by ρ(W/Z)− 1, it remains to bound the number of
times we are allowed to blow-up along a node to obtain a bound on ρ(Y/W ). This follows from
a straightforward induction as in [AM04, Lemma 1.9]. An explicit computation shows that

ρ(Y ) = ρ(Y/W ) + ρ(W/Z) + ρ(Z) ≤

(
1

(ε− ν)2
− 1

)
·

(
8

εν2
− 1

)
+

(
8

εν2

)
+ 2.

As ν = ε
2 , we deduce that

ρ(Y ) ≤
128

ε5
+

(
3−

4

ε2

)
≤

128

ε5
. �

We now have all the ingredients to prove the BAB conjecture in dimension 2 and characteristic
p 6= 2, 3 and 5.

Theorem 5.12. Let ε > 0 be a rational number. Then, the classes

X tame
dP,ε = {X | X is a geometrically integral tame ε-klt del Pezzo surface } , and

X>5
dP,ε =

{
X | X is an ε-klt del Pezzo surface s.t. char(H0(X,OX )) 6= 2, 3, 5

}

are bounded.

Proof. By Lemma 5.9 and Proposition 5.11, there exists n = n(ε) > 0 such that −nKX is
Cartier for all geometrically integral ε-klt del Pezzo surfacesX. Hence we can apply Corollary 5.8
to conclude that X tame

dP,ε and X>5
dP,ε are bounded. �

Remark 5.13. To prove the geometrically integral case of the BAB conjecture in characteristic
p ≤ 5, the missing ingredient is a bound on the irregularity for ε-klt del Pezzo surface. While the
canonical case (the characteristic p > 5 klt case) has been treated in Theorem 1.1 (resp. [BT22,
Theorem 5.7]), we are not able to prove a similar bound in the general case. Note that klt del
Pezzo surfaces with h1(X,OX ) = 1 are constructed in [Tan20] over fields k of characteristic
p = 2, 3 and p-deg(k) = 1.
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